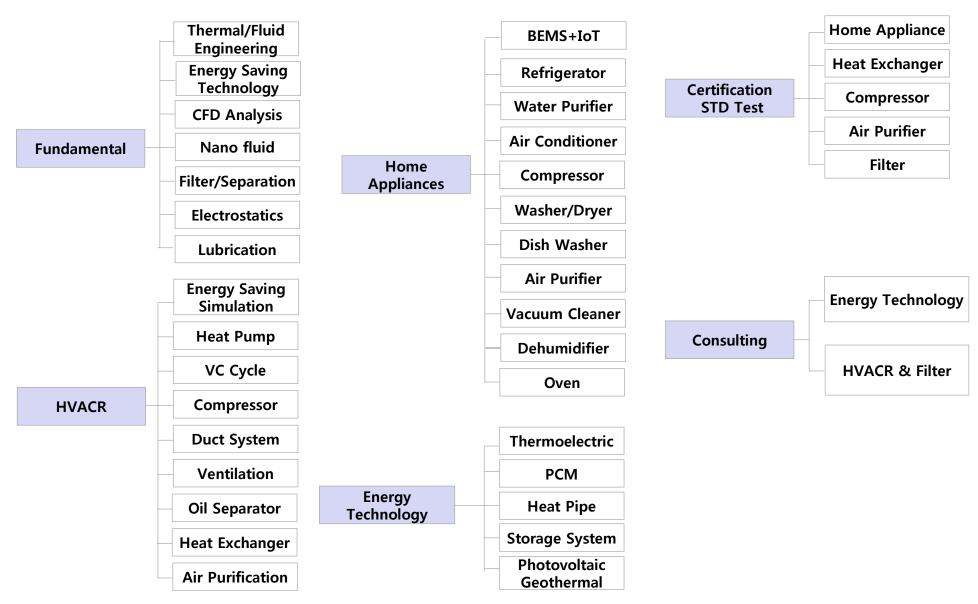
Introducing EcoEnergy Research Institute

2016. 3. 30

Jaekeun Lee President/Ph.D. jaekeun.lee@ecoe.kr www.ecoenergy.re.kr

Contents



- Introduction
- Research & Business Area
- Introducing President
- Global Networking
- Research Facilities
- VISION
- Introducing Research Experience

Introducing EcoEnergy Research Institute

Company Name	EcoEnergy Research Institute Co., Ltd (EcoEnergy)		
President	Jaekeun Lee (010-2127-7886, jklee@pnu.edu)		
Established	in 2011		
Location	Busan, Korea		
Business Line	 R&D & Manufacturing of Home Appliances: Refrigerators Washing Machines, Air-Conditioners, Oven Ranges Refrigeration Cycle, HVAC, Heat Pump Technology Compressor & Heat Exchanger Technology BEMS/IoT: Building Energy Management System Building Energy Simulation:Modeling & Optimization Environmental Energy Technology Renewable Energy, Solar Cooling/Heating Nanofluid & Surface Coating Technology Air Cleaning & Vacuum Cleaner, Filtration, Electrostatics 		
Numbers of Employee	27 (7 Ph.D, 15 Master Degree)		
Facilities	Psychrometric Calorimeter, Compressor Tester Air Cleaner Tester, Drier Tester, Vacuum Cleaner Tester. etc		
President Work Experience	- Commercialized Products: 35 Models - Geothermal Heat Pump, Vacuum Cleaner, Membrane Filte - Patents No.: 75, Research Projects No.: 200		

Research/Business Area

Strong Points of EcoEnergy Res. Ins.

Excellent Faculties in Environmental Energy Technology

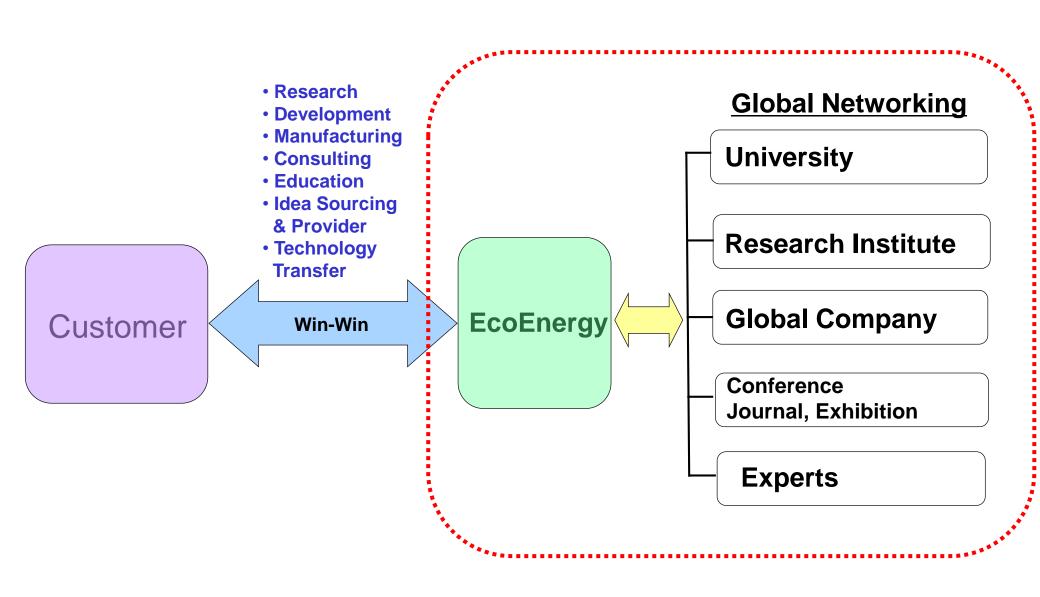
- R&D experts in Environmental Engineering, HVACR, Home Appliances
- Having experience with 200 research projects related to energy saving & home appliances

Key Technology of Energy Issues

- Current key technology such as refrigeration cycle, heat pump, heat exchangers, compressors, BEMS/IoT, energy saving technology, air/liquid cleaning, surface coating, nanofluids/nanobubble technology
- Applied to home appliances such as air conditioners, refrigerators, cooking ovens, washing machines, driers, compressors, air cleaners, and vacuum cleaners.

Global Top Research Facilities in Environmental Energy Engineering

- Psychrometric Calorimeter, Compressor Testers, Friction/Lubrication Testers
- Performance Testers of Air-conditioners, Refrigerators, Air Cleaners, Vacuum Cleaners


Global Networking

- Making agreement with excellent universities and research institutes
- Acquainted with 120 researchers in environmental energy technology

CEO's Excellent Work Experience

- Having job experience of home appliances & HVACR for 30 years
- 35 commercialized products such as Vacuum Cleaner, Geothermal Heat Pump and Membrane Filter

Collaboration between EcoEnergy and Customer

Introducing President

- Name: Jaekeun Lee
- Contact: (Tel) 010-2127-7886, (e-mail) jaekeun.lee@ecoe.kr, www.ecoenergy.re.kr
- Educational:
 - June 1992: University of Minnesota (USA), Ph.D. in Mechanical Engineering
 - May 1990: University of Minnesota (USA), M.S. in Mechanical Engineering
 - Feb. 1983: KAIST (Korea), M.S. in Mechanical Engineering
 - Feb. 1981: Pusan National University (Korea), BA in Mechanical Engineering
- Work Experience:
 - 2011.1- present : President, EcoEnergy Research Institute (EcoEnergy)
 - 2009.5- 2010.5 : Department Head of Mechanical Engineering, Pusan National University
 - 2008.8- 2010.6 : Director of Energy Technology Center
 - 2006.8- 2010.5 : Director of HVAC&R Technology Center
 - 2005.1- 2010.5 : Director, LG CARE(Center of Air-Conditioning Refrigeration and Energy)
 - 1993.3- 2010.10: Professor, Mechanical Engineering Dept., Pusan National University
 - 1992.7- 1993.2: University of Minnesota, Post Doctoral Position
 - 1991.6- 1993.2: MSP Company (USA), Design of Environmental Protection Device
 - 1983.2- 1988.6: LG Electronics
- Specialty: HVAC&R (Heating, Ventilation, Air-conditioning, Refrigeration)
 Heat Exchanger, Compressor, Heat Pump, Nanofluids, Filtration, Electrostatics
 Environmental Energy Technology, Renewable Energy, Thermal-Fluid Technology
- Commercialized/Technical Transfer Products
 - 35 Models(Vacuum Cleaner, Geothermal Heat Pump, Air Cleaner..)
 - Vacuum Cleaner: 14 Models, \$2,000M Sales
- Patents No.: 55, Books published: 6
- Research Projects No.: 200, Journal Publication No.: 453 papers

Global Networking

- Making agreement with excellent universities and research institutes
- Acquainted with 120 researchers in environmental energy technology

Nation	Institute	Specialty & Researcher		
	University of Maryland, CEEE	Environmental Energy, HVACR, MEMS (Prof. Radermacher)		
U.S.A	University of Illinois, ACRC	HVACR, Heat Exchanger (Prof. Jacobi)		
	Purdue University, CTRC	HVACR, Compressor, Heat Exchanger (Prof. Groll)		
	NIST	Standard of HVACR, Thermal Fluid (Dr. Domanski)		
	Tianjin University	Refrigeration Cycle, geothermal Heat Pump (Prof. Ma Yitai)		
China	Shanghai Jiao Tong University	Green Building, HVACR (Prof. Zhang)		
Omna	Xian Transport Tech.	Compressor, HVACR		
_	Kyushu University	Environmental Energy Technology		
Japan	Shizuoka University	Compressors (Prof. Yanagizawa)		
India	IIT	Environmental Energy Technology, HVACR (Prof. Das)		
	Seoul National University	Prof. M.S. Kim (Refrigeration), Prof. M.S. Choi (Nano Particles)		
	Yonsei University	Prof. Y.H. Cho (Heat Transfer)		
	Hanyang University	Prof. K.S. Lee (Heat Pump), Prof. K.H. Ahn (Particle Technology)		
Korea	KAIST	Prof. S.Y. Lee (Two Phase Flow), Prof. D.G. Lee (Materials)		
	Pusan National University	Prof. M.Y. Ha (Heat Transfer), Prof. E.B. Jung (Noise/Vibration)		
	POSTECH	Prof. S.J Lee (Heat Transfer, Fluid Flow)		
	KIMM	Dr. Y.J. Kim, Dr. E.S. Yoon (Environmental Energy, Turbomachinery)		
	KIER	Dr. Y.H. Kang, Dr. N.C. Baik (Zero Energy House, Renewable Energy) 8/1		

Research Facilities (1/2)

• Established Global Top Research Facilities in Environmental Energy Engineering

Facilities	Specification		
Psychrometric Calorimeter	5RT		
Plate Heat Exchanger Tester (Shell-Tube Heat Exchanger)	5RT (19 kW, 25 Hp)		
Compressor Simulator I	100-500W		
Compressor Simulator II	1,744 ~10,465W		
Compressor Simulator III	8,790 ~ 35,163W		
Compressor Reliability Tester I	50 ~ 300W		
Compressor Reliability Tester II	3 RT		
Chiller Simulator	5RT		
Environmental Chamber	3x4x4m, -40C°		
Compressor Lubrication Tester	-180 Hz Thrust/Journal Bearing		
Friction/Erosion Tester	6,000 N, Disc on Disc		
Multi Air-Conditioner Tester	15 HP, KSC9306 ANSI/ASHRAE 16-1983		
Safety Tester of Electrical App.	IEC60335, UL412/484 UL474/1995 Tester		
Heat Recovery Ventilator Tester	100~3,000CMH ARI1060		
Air Cleaner Tester	KSC9314, ACA,AHAM		
Vacuum Cleaner Tester	ASTM, IEC60312		

Facilities	Specification		
Reference to Contification Tester	-50C°, AHAM HRF-1		
Refrigerator Certification Tester	ANSI/ASHRAE 72-1995		
Reverberant Chamber	4.8x4.8x4 m, 18 dB		
Anechoiv Chamber	ISO 3741, 25 dB		
Refrigerator Simulator	-40C°		
Indoor Air Quality Tester	Dust, CO, CO2, O3		
Pressure, Flow, Noise Tester	0.5∼10 m/s		
Dust Monitor	0.1~10 um		
Hydrosol Counter	0.1~10 um		
Climate Environmental Chamber	10-90%, -40C° ~ 60C°		
Digital Microscope	X3,000		
High Speed Camera	2,000 f/s		
Micro Weight Balance	Accuracy 10 ug		
Thermal Image Camera	Fluke		
Thermal Fluid Analysis program	Fluent		
TRNSYS/Coil Designer	Software		
Vacuum/Compressed Air Line	10 torr		

Research Facilities (2/2)

Psychrometric Calorimeter

성능 : 3RT급 시험장치: 공기 - 물 실험 공기 - 냉매 실험(증발, 응축) 공기 유량: 4~50CMM 냉매 유량:50~250kg/h 물 유량: 20~2,000kg/h

Plate HEX Tester

Compressor Simulator

시험장치 : 냉매펌프 (90~500kg/h), Preheater(20kW), 응축기, 항온 수조, 질량유량계, 온도센서, 차압계, Receiver, Data acquisition system 등

Fuel Cell Test Station

연료전지 Stack

셀 면적 200 arl, 셀 수 12셀, 단위면적당 전류량 180 A/aii Stack 용량 1.2 kW. 운전 온도 80 °C 이하

주요 사양

성능: 9RT급

시험장치 1: 냉동능력 100~500W (R-600a,R-134a8)

시험장치 2: 냉동등 1,744~10,465W

(R-22R-410a8) 시험장치 3: 냉동능력 8,790~35,163W

(R-410aS)

Refrigerator Chamber

3,000Wx 4,150Dx2,950H 시험장치 온도 -10°C~60°C±0.2°C 이내 습도 20~95%RH±2%이내, 풍송 0,25m/s 이내

Comp. Reliability Tester

시험장치1: 냉방능력 50~300 W (R134a. R600a용), 2대 동시 시험 가능

시험장치 2: 냉방능력 28,000~40,000

(a) 압축기 신뢰성 평가장치 1

(b) 압축기 신뢰성 평가장치 2

Multi Heat Pump Tester

실내 2실, 실외 2실구성 시료시험능력 30hp, 7.5hp, 15hp냉방능력, 소비효율 측정가능

"부산 테크노파크 보유

"부산 테크노피크 보유

Heat Exchanger Tester

냉방능력측정 1,500~15,360kcal/h 난방능력측정 1.500~15.360kcal/h 시료 풍량

250~2.000CFM

Air-Cleaner Tester

KSC9314, KACA(공기청정 협회규격), AHAM 시험장치 풍동, 청정통, 무향실, 탈취챔버

Vacuum Cleaner Tester

ASTM, IEC 60312, KS 시험장치 미세먼지측정설비, 공기정보측정 장치, ASTM 풍동

"부산 테크노파크 보유

Heat Pump Simulator

직동 범위: 압축기 0~120 Hz, 실외기 팬 0~1800 rpm 팽창 밸브 기변 가능

주요 지점(압축기 인출구, 팽창변 인출구 등) 온도, 압력 측정 및 Sight Glass를 통한 내부 유동 관찰 가능

압축기: Hermetic Compressor 9-12 kBTU

Refrigerator Simulator

1/2HP, 충온용, 단상220V, Control Box 포함 음축기 및 Fan motor 공랭식, 단상200V, 60Hz 9W 증발기 및 Fan motor 공랭식, 단상220V, 60Hz, 6W

Geothermal Heat Pump

부산대학교 제1교수연구동 준공 지열(地熱) 이용한 에너지절약형 시스템 도입

제1교수연구동은 기존 학교시설의 건축스타일과 달리 현대적 감각의 창의성 있는 건축이를 자 랑하며, 건축가 김중업 선생이 설계한 인문관의 모습을 현대적으로 재해석하여 기능적, 형태적 으로 연결하고 있다. 특히 신·재생에너지 중 지열(地熱)을 이용한 에너지절약형 냉·난방시스 템을 개발, 도입하여 향후 교육시설에 가장 적합한 신·재생에너지 모델을 제시할 것으로 기대 를 모으고 있다. (2007.03.23)

부산대학교 제1교수연구동(108RT)

Cogeneration Heat Pump

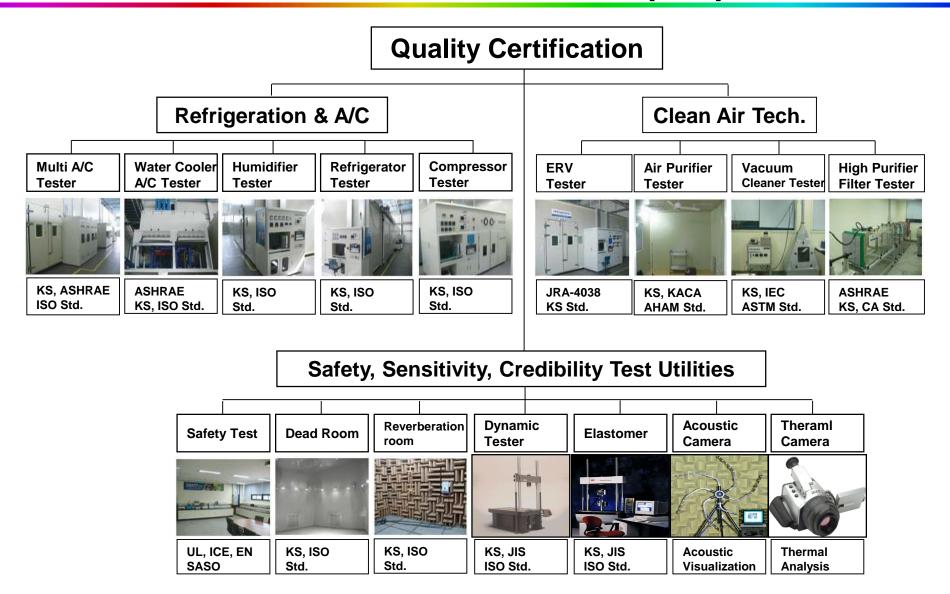
부산대 기숙사 (진리관)

-클랙: 30kWe X 2 60kWe -열회수: 50kW X 2 100kW -총합호율: 85%

Other Equipments

압축기(리니어, 로타리, 왕복동식) 신뢰성 평가장치

• 태양광발전 성능평가장치


• 마이크로 열교환기 평가장치

- 풍력 발전 성능평가장치
- · DOE(Green Building) S/W · Heat Pipe성능평가장치
- 열교환시스템 설계 S/W • 열전도도 측정장비 • 나노입자 카운터
- 지열에너지 설계 S/W • 비등열전달 측정설비
- 항온항습 Chamber

• 태양열 발전 성능평가장치

- · Compressor Simulator
- 자기에너지 평가장치
- 에너지공정 설계 S/W
- 열전발전 / 냉동 성능평가장치
- · Oil마찰계수 측정장치

Certification Testers (1/2)

^{*}Testers located in Busan TechnoPark, contracted with EcoEnergy

Certification Testers (2/2)

KOLAS Certification

Recovery Ventilatór Equipment Test Lab

Air-conditioner Test Lab

Air-Cleaner Test Lab

Vacuum-Cleaner Test Lab

Refrigerator **Test Lab**

Abroad Authority for Safety Test laboratory

Electrical Safety Test of Refrigeration equipment

JRA-4038 KS

-15 ~ 40 °C -20 ~ 60 °C 20 ~ 90 % 30 ~ 80 % 1.500 ~ 15.000 ~ 15.360 kcal/h 7 ~ 57 CMM

75.000 kcal/h 18 ~ 100 CMM KS, KACA AHAM

Clean room: class 10000 Particle counter 0.1 ~ 20 m Wind tunnel & Deodorization

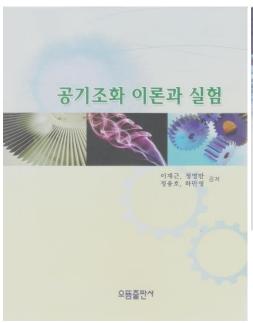
KS. IEC **ASTM**

Dust emissions test Particle supply **Particle** instruments **ASTM** wind tunnel

KS. ISO

Storage Temperature test Water Vapour condensation test Energy consumption Temperature rise time. Freezing test, Ice-making test

ISO 9001 : 2000, ISO 14001 : 2004



^{*}Testers located in Busan TechnoPark, contracted with EcoEnergy

6 Books published

HVAC:Theory/Experiment by Jaekeun Lee (p515, 2010) Refrigeration: Theory/Experiment by Jaekeun Lee (p623, 2010) Compressor Technology: Theory/Experiment by Jaekeun Lee (p639, 2011) Design of Renewable Energy System by Jaekeun Lee (p656, 2010)

설계와 실험

열교환기 이론과 실험

이재근 · 정성학 공제

Heat Exchanger: Theory/Experiment by Jaekeun Lee (p582, 2011)

High Efficient Energy System: Theory/Experiment by Jaekeun Lee (p733, 2011)

VISION

EcoEnergy Research Institute Co., Ltd. World Best EcoEnergy Solution Provider !!!

Introducing Research Experience of EcoEnergy

2016.3.30

Contents

- Air Conditioner & BEMS
- Compressor, Heat Exchanger
- Refrigerator, Washing Machine, Dryer
- Renewable Energy
- Oven, Dishwasher, Air Cleaner, Vacuum Cleaner
- MEMS/Nano Technology

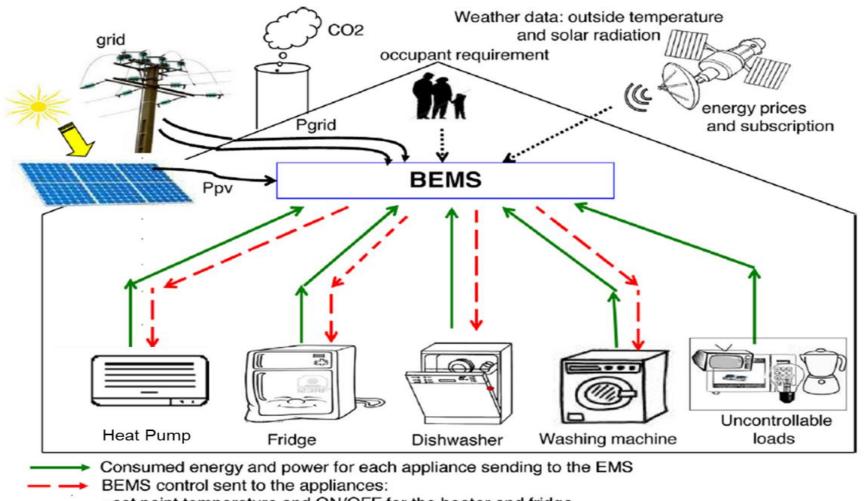
Heat Exchanger, Compressor, Air Cleaner

Heat Exchanger (2002~present)

- MF HEX, Fin-tube HEX
- Plate HEX, Shell-Coil HEX
- Plasma HEX, Total HEX
- Optimal & Compact Design
- HEX Fouling

Compressor (2004~present)

- Scroll/Rotary Comp.
- Linear/Recipro. Comp.
- Thermal Analysis
- Lubrication & Reliability
- High Speed/High Pressure


Air Cleaner (2000~present)

- Design & Certification CADR
- Yellow Sands Removal
- PM2.5 Filter Module
- Electrostatic Precipitation
- Filter Design

BEMS(Building Energy Management System)

BEMS+IoT+Smart Appliances

- set point temperature and ON/OFF for the heater and fridge
- starting time and ON/OFF controls for the washing machine and dishwasher
- ····· Prediction data
- Real time data

Research of Building HVAC & R

BEMS/IoT (2008~present)

- -Building Energy Management System
- -Building Energy Simulation
- -Modeling& Optimization, LCC Analysis VRF Heat Pump (20HP) (2008~present)
 - High Speed Scroll Comp.
 - New Heat Exchanger

Chiller (2008~present)

- Shell-Tube HEX
- Oil Return

Geothermal Heat Pump (2006~2013)

Fuel Cell (2005~2008)

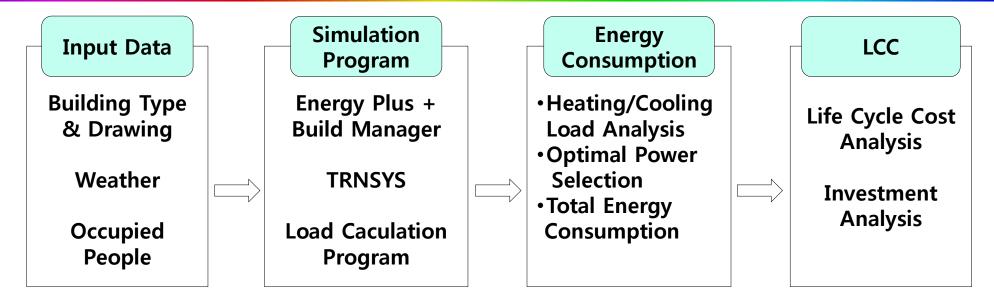
Heating/Cooling Load Program(2002)

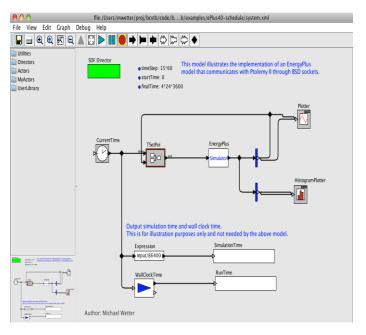
Ventilation System(2000~2004)

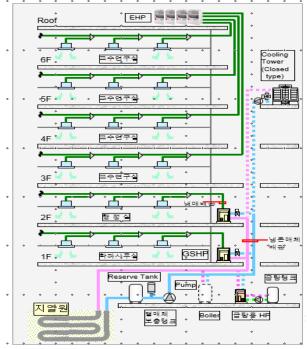
- -School Ventilation & IAQ
- -Comfortable Design

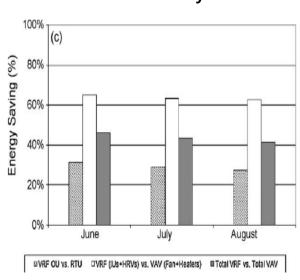
Duct & Pipe Design (2001~2003)

Co-generation (2005~2010)


School Building Ventilation Design ('06~'10)

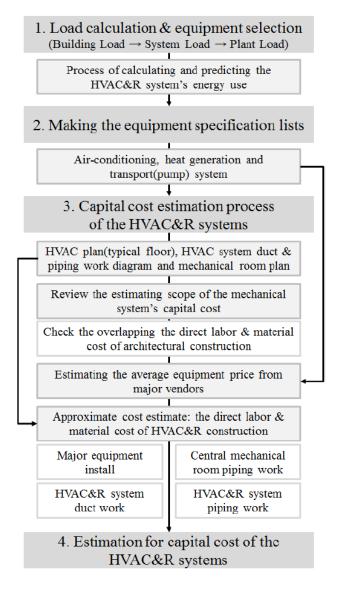

Solar Cooling System (2010)


- Adsorption Refrigeration
- PVT Module for Cooling

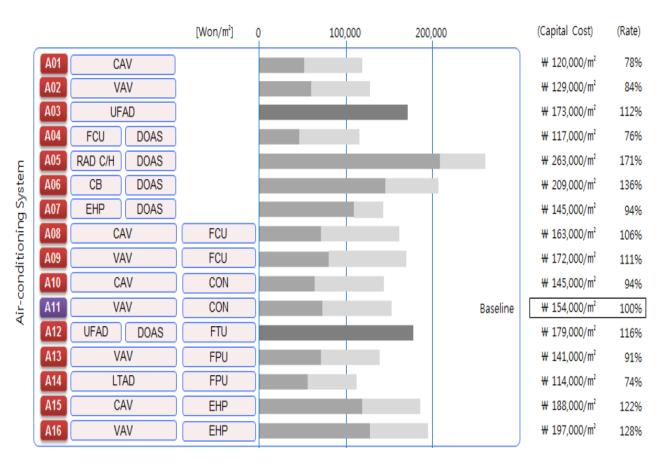

Building Energy Simulation

Example: Energy Saving Comparison Of VAV vs VRF System

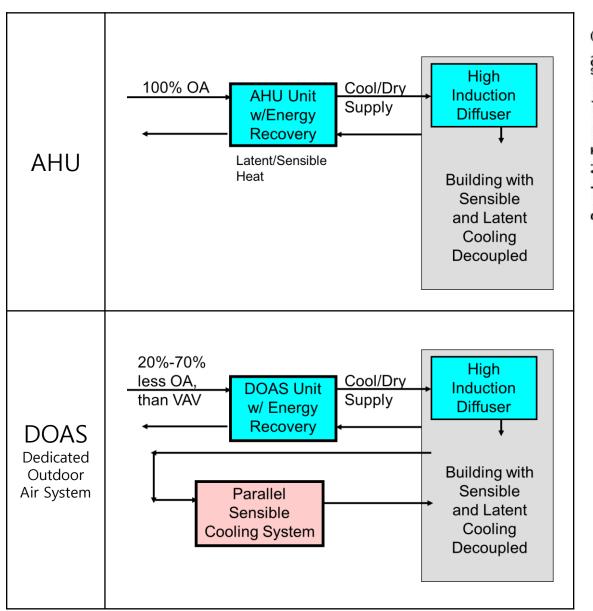
Technology of Building Energy Saving

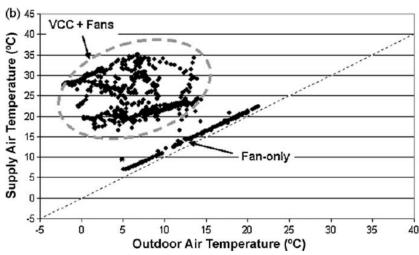

	Relevant Technologies			
	Advanced Compressors	Advanced Desiccant Material	Backward-Curved/Airfoil Blower	
	Copper Rotor Motor	Direct-Contact Heat Exchanger	Electrodynamic Heat Transfer	
	Electronically Commutated Permanent Magnet Motor (ECPM)	Zeotropic Refrigerant	Electrostatic Filter	
Component(24)	Heat Pipe	High-Efficiency (Custom) Fan Blades	High-Temperature Superconducting Motor	
	Hydrocarbon Refrigerant	Improved Duct Sealing	Larger Fan Blade	
	Low-Pressure Refrigerant	Microchannel Heat Exchanger	Refrigerant Additive (Enhance Heat Transfer)	
	Smaller Centrifugal Compressors	Twin-Single Compressor	Two-Speed Motor	
	Unconventional (Microscale) Heat Pipe	Variable-Pitch Fans	Variable-Speed Drive	
	Dedicated Outdoor Air Systems (DOAS)	Demand-Control Ventilation (DCV)	Chemical Heat/Cooling Generation	
	Apply Energy Model to Properly Size HVAC equipment	Alternative Air Treatment (to reduce OA)	All-Water (versus All-Air) Systems	
System(14)	Displacement Ventilation	Ductless Split System	Mass Customization of HVAC Equipment	
	Microenvironment (Task-ambient Conditioning)	Novel Cool Storage	Natural Refrigerants	
	Radiant Ceiling Cooling/Chilled Beam	Variable Refrigerant Volume/Flow		
	Dual-Compressor Chiller	Dual-Source Heat Pump	Economizer	
Equipment(10)	Enthalpy/Energy Recovery Heat Exchangers for Ventilation	Engine-Driven Heat Pump	Ground-Source Heat Pump	
	Heat Pump for Cold Climates	Liquid Desiccant Air Conditioner	Modulating Boiler/Furnace	
	Phase Change Insulation			
Controls/ Operation(7)	Adaptive/Fuzzy Logic HVAC Control	Building Automation System	Complete/Retro Commissioning	
	Finite State Machine Control	Personal Thermostat (e.g. Ring Thermostat)	Regular Maintenance	
	System/Component Performance Diagnostics			

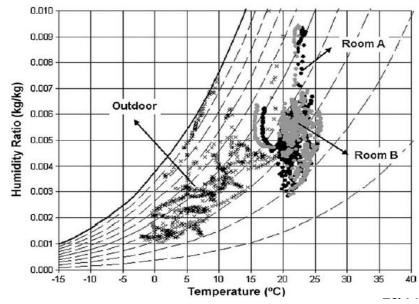
Energy Savings Potential for Building


Technology Option	Technology Status	Technical Energy Savings Potential (quads)	
Adaptive/Fuzzy Logic Controls	New	0.23	
Dedicated Outdoor Air Systems	Current	0.45	
Displacement Ventilation	Current	0.20	
Electronically Commutated Permanent Magnet Motors	Current	0.15	
Enthalpy/Energy Recovery Heat Exchangers for Ventilation	Current	0.55	
Heat Pumps for Cold Climates (Zero-Degree Heat Pump)	Advanced	0.1	
Improved Duct Sealing	Current/New	0.23	
Liquid Desiccant Air Conditioners	Advanced	0.2 / 0.06 ¹²	
Microenvironments / Occupancy-Based Control	Current	0.07	
Microchannel Heat Exchanger	New	0.11	
Novel Cool Storage	Current	0.2 / 0.03 ¹³	
Radiant Ceiling Cooling / Chilled Beam	Current	0.6	
Smaller Centrifugal Compressors	Advanced	0.15	
System/Component Diagnostics	New	0.45	
Variable Refrigerant Volume/Flow	Current	0.3	

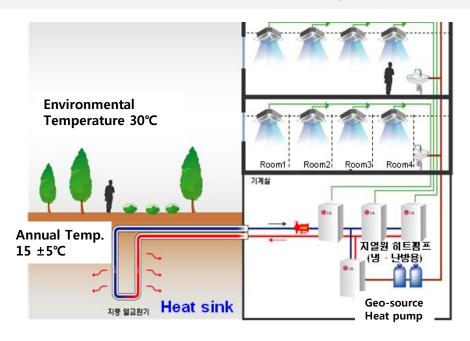
HVACR Building Energy: Investment Design


Initial Investment Estimation




Comparison of Initial Investment Estimation

Ventilation System Design



Renewable Energy Research

- 1. Geothermal Heat Pump: Design of Ground Heat Exchanger and Monitoring Ground Temperature, Korean-typed Geothermal Heat Pump
- 2. Fuel Cell: Heat Balance/Water Management, Cooling Technology, Waste Heat Utilization
- 3. Solar Heating & Cooling, Application Technology of absorption chiller
- 4. Photovoltaic System: PVT Module for Cooling & Waste Heat Utilization
- 5. Nano-lubrication to Wind Power
- 6. Combined Heating Power Integration for Building
- 7. Green Campus, Green Building, and Zero Energy House

Design & Evaluation of PNU Green Campus

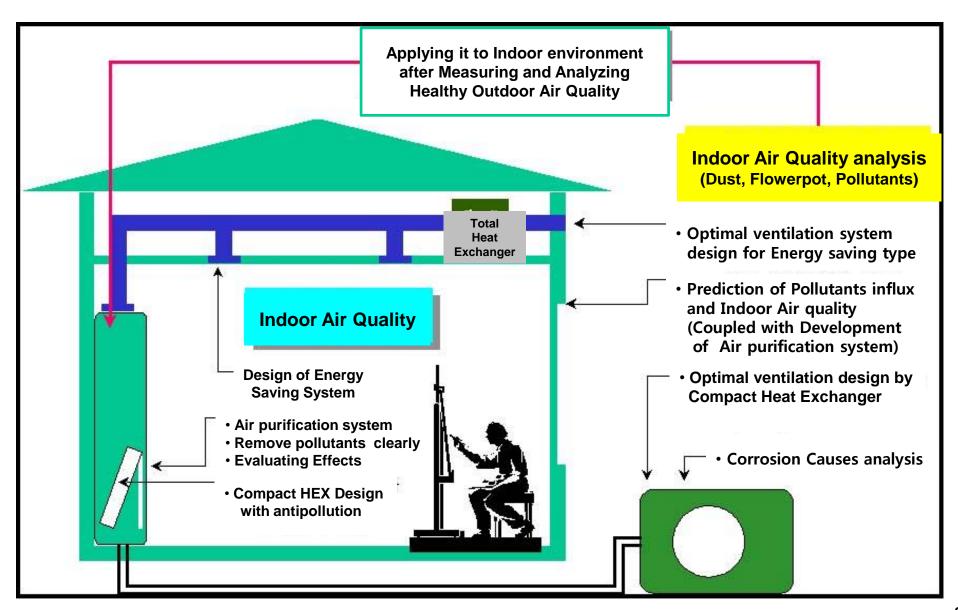
Ground Source Heat Pump (GSHP), photovoltaic and solar heat systems have been installed in Pusan National University (PNU) campus and hospital buildings (2005-2010).

Green campus view of PNU (Yangsan campus)

		GSHP	Solar power	Solar heat	
Hospital	Oriental medicine	450 RT			Yangsan Campus
	Dental	405 RT			"
	Children	75 RT			II .
School building	Medical C.	285 RT	50 kW		II .
	Dental C.		50 kW		" (Cool tube)
	Nursing C.	240 RT		400 m ²	"
	Administration	120 RT			"
	Humanity C.	90 RT			Pusan Campus
	Power plant			400 m ²	Yangsan Campus
Total		1,665 RT	100 kW	800 m ²	

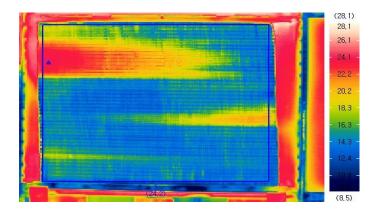
PNU Geothermal Heat Pump System

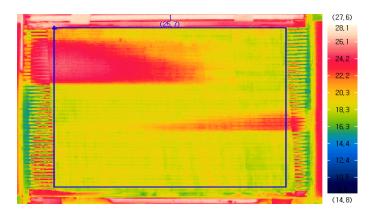
System outline


- GSHP system and EHP (hybrid system) installed
- Total area of building: 7,070m² (B2~6F)
- GSHP system : 1F~2F(1,192m²)
- Heat pump: 10HP x 10ea(heating and cooling) (90RT)
 - 10HP x 2ea(hot water) (18RT)
- Ground heat exchanger: Closed vertical type
 - (24borehole x 175m)
- Construction period : 2006. 4 ~ 2007. 2
- 10% Ethtanol, Bentonite & Silica Sand for grouting

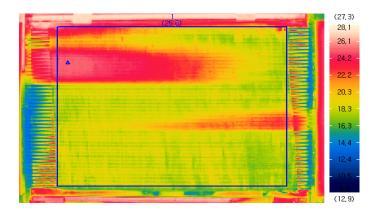
Schematic of test building **EHP system** $(3F\sim6F)$ **GSHP** system (1F~2F) Heating & Cooling) heat exchanger Hot wate

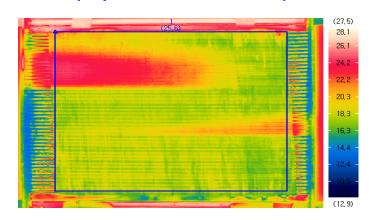
Pusan National University (PNU)


IAQ & Ventilation

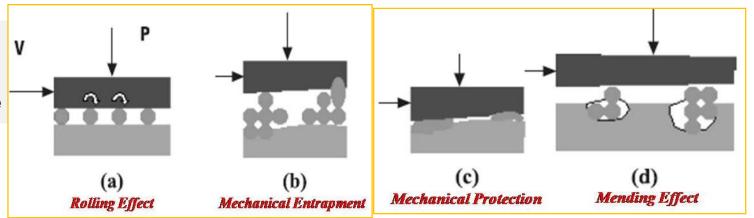

Refrigerant Distribution of MF Heat Exchangers

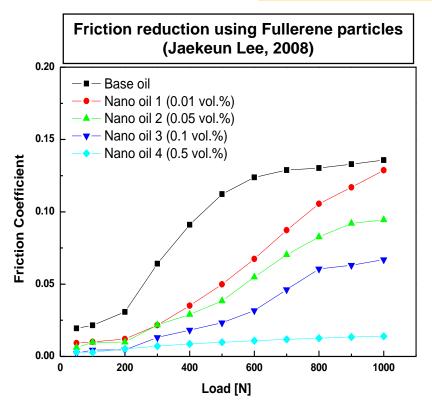
Experiment results for refrigerant distribution analysis using a thermal camera (2010)

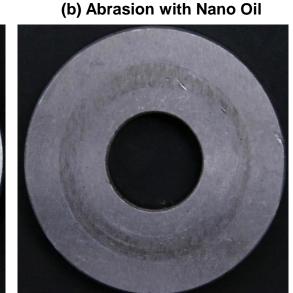

No distributor insertion (superheated area:2.3%)


<u>Distributor insert at position2</u> (superheated area:8.5%)

<u>Oistributor insert at position1</u> (superheated area:10.1%)




<u>Distributor insert at position3</u> (superheated area:6.1%)


Nano Lubricants in Compressors (2005-2011)

- Low Friction
- Anti-wear
- High Extreme Pressure

(a) Abrasion with Raw Oil

Anti wear characteristics, Jaekeun Lee, 2008

Refrigerator Research

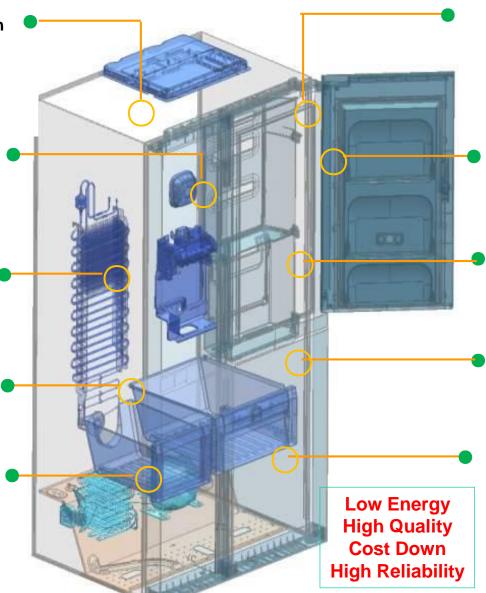
Energy Saving/Cycle

- High Efficient Cycle Design
- Low Power Consumption
- New Refrigerant
- New Concepts Cycles
- Global Regulation
- Gasket Simulator

Fluid Flow/Heat Transfer

- Cold Air Distribution
- Ice/Water Technology
- Fan/Duct Design

Evaporator/Condenser


- Compact Design
- Defrosting Control
- MF HEXs/New Materials

Sensor Application

- Temperature, Pressure
- Vibration, Flowrate

Compressor Technology

- Inverter Control
- Low Noise, High Reliability
- Oilless Linear Compressor
- Reliability Test Period ↓

Structural Design

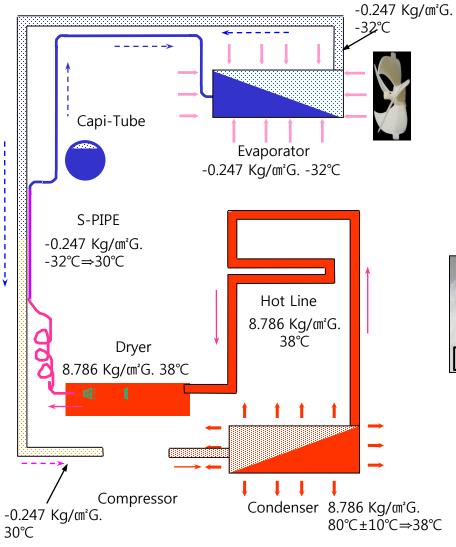
- 3F(Fit,Finish,Feel) Design
- Cabinet/Door Design (DID: Door-in Door)
- Stiffness Analysis
- Deformation Analysis
- Packaging Drop Test

Material/Processing

- Foaming, Gasket
- Insulation Material
- De-odor

Freshness/
New Features
3S(Std, Simple, Share)

Vibration/Noise Analysis


- Flow Induced Noise Tech.
- Low Noise/Vibration

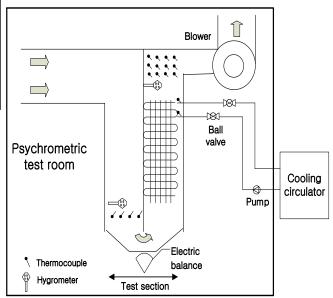
System Algorithm Electronics

- Intelligent Control
- Signal Processing
- Failure Diagnosis
- Display

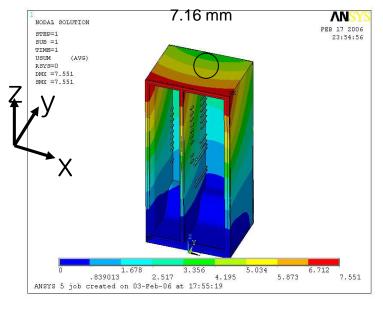
Refrigeration Cycle Design

Refrigerator Cycle Design (2005-present)

Evaporator Design ('06-present)

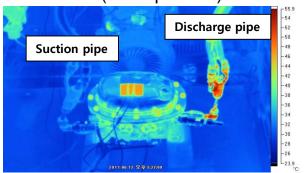

- -Frost/Defrosting Test
- -Heat Exchanger Test
- -Flow/Pressure Measurement

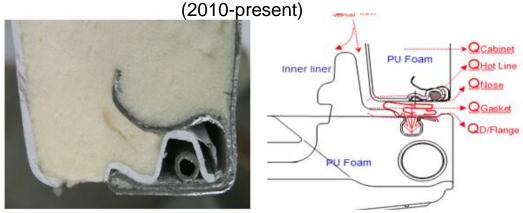
Crystal Ice Manufacturing ('11-'13)

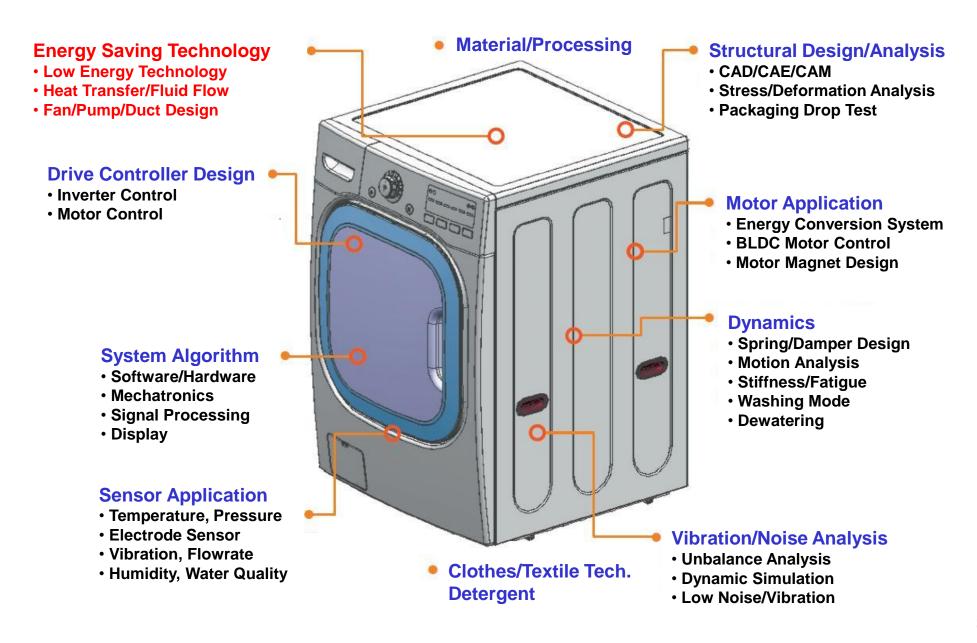


Structural & Thermal Design of Refrigerators

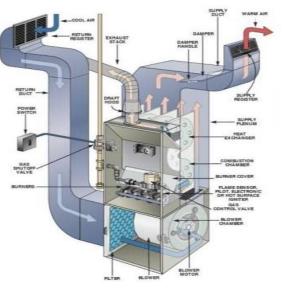
Structural Design/Stress Analysis of Cabinet (2004-present)

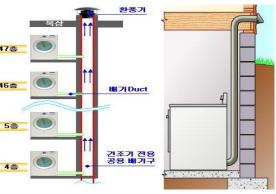



Cold Air Distribution: Visualization ('06-'16)

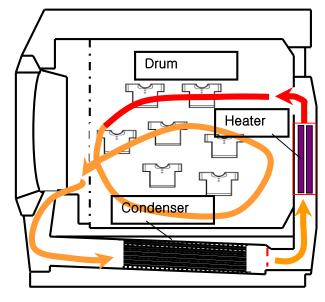

Thermal Analysis of Compressors (2008-present)

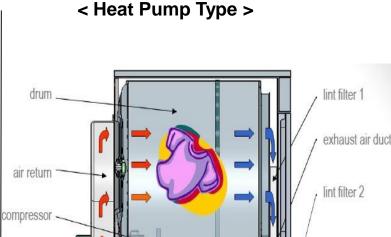
High Efficient Gasket Design

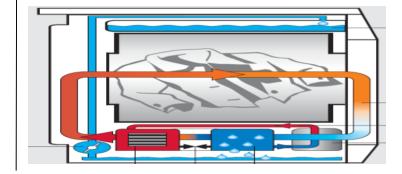

Washer/Dryer Technology

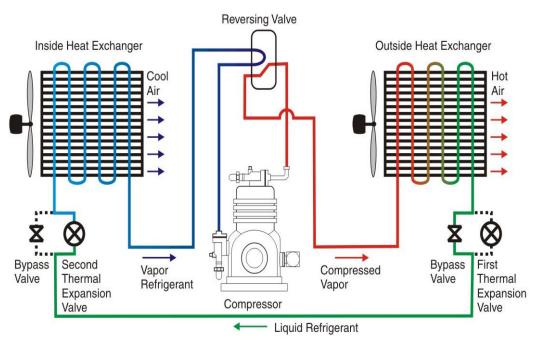


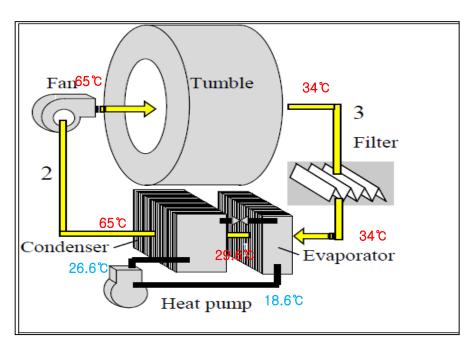
Clothes Dryer Research

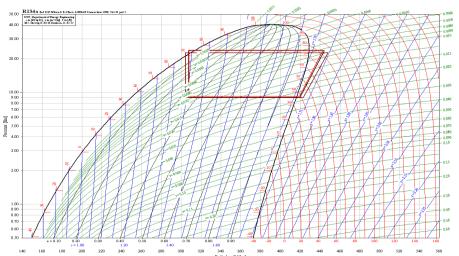

- Energy Saving Technology of Dryers (2008-present)
- Lint-free Module Design (2009)

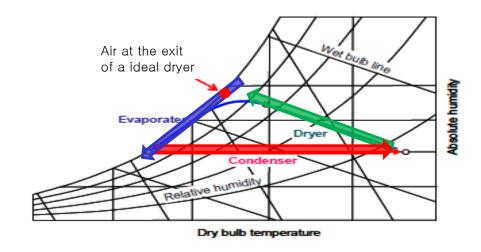




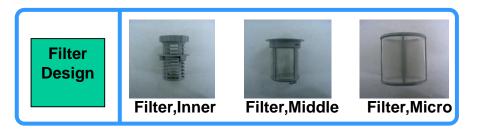

heat exchanger evaporator

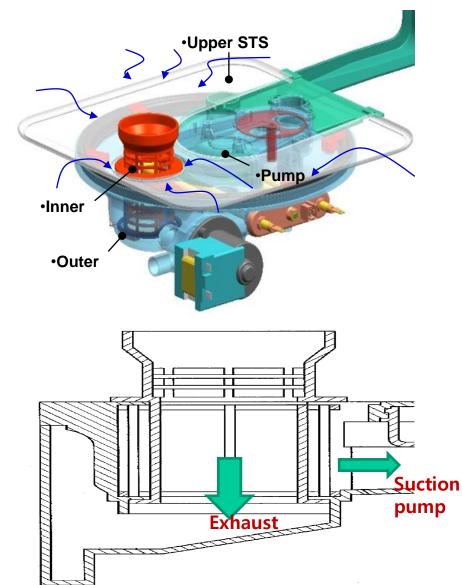

condensed water



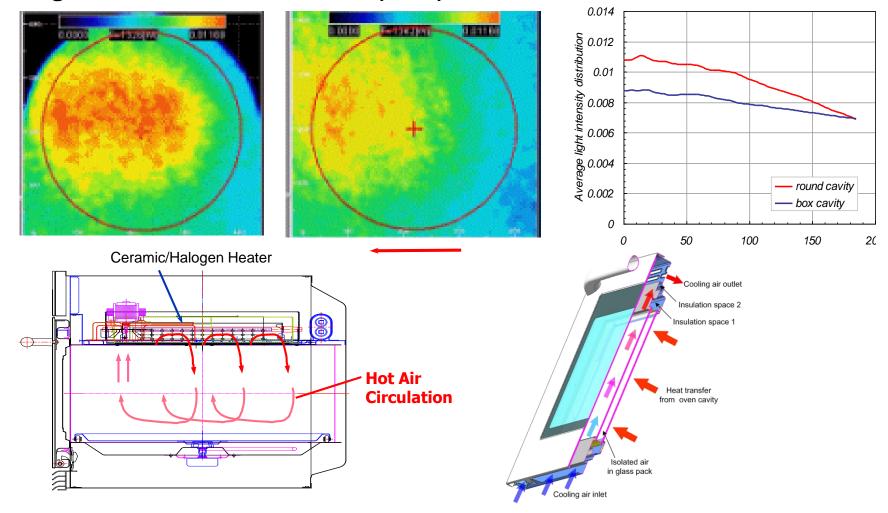

condensor

Heat Pump Dryer Research





Dishwasher Research

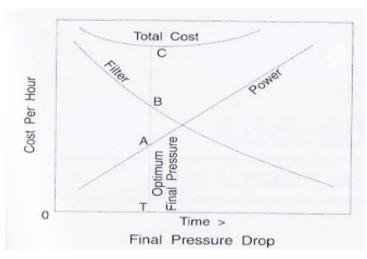


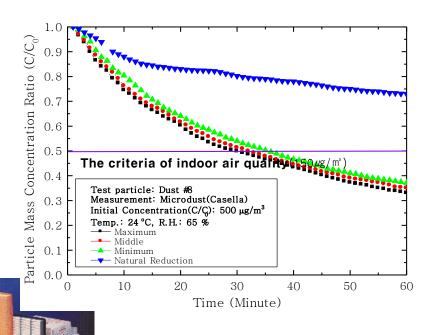


Oven Research

- Oven Energy Simulator & Energy Saving Design
- Speedy Cooling/Fast Cooking in Cooktop
- Oven Easy Cleaning, Image Sensor Cooling
- Design of Smoke/Odor Collector (2010)

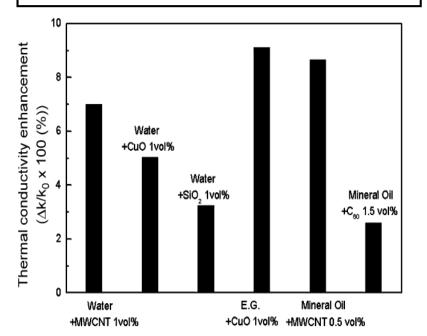
Cyking Vacuum Cleaner (1999-present)

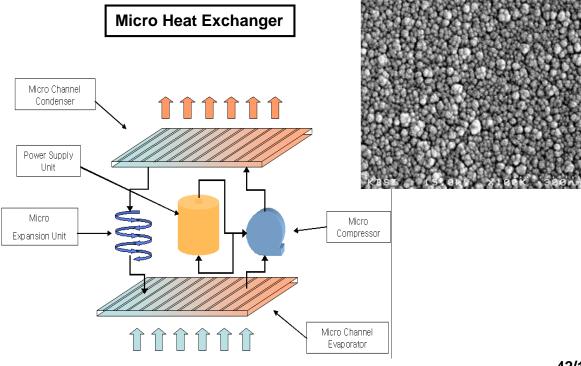



Sales since 2001: \$2B, 15B RMB, 2.3조원

Air Cleaner Research

High Efficient Air Cleaner Design (1998-present)
CADR Air Cleaner Evaluation
ASHRAE Air Filter Testing

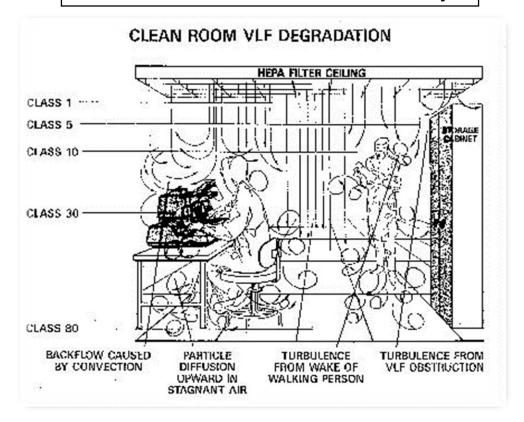

AHAM AC STD Tester: Dust, Odor

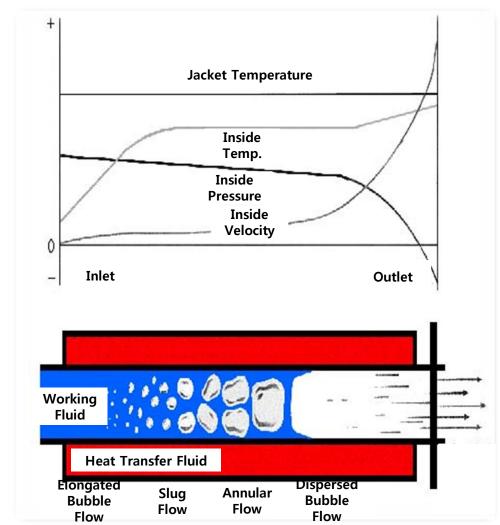


NanoMEMS Technology

- 1. Nanofluids (2001-2014)
 - Nanofluid for Heat Exchangers: Conduction & Convection
 - Nano-Lubricants: Friction coefficient, Wear characteristic, Application methods
- 2. Nano/micro Particle Dynamics, Production (2003 present)
- 3. Nano Fiber: Air cleaning, Photo-catalyst (1998 2009)
- 4. Micro Compressors, Micro HEX, Micro EP/Air Cleaner, Hard Disk Drive, Micro Pumps
- 5. Nano Coating for Surface Treatment (2001-2006)
- 6. Nano/Microbubble Generation & Dynamics (2008-2010)

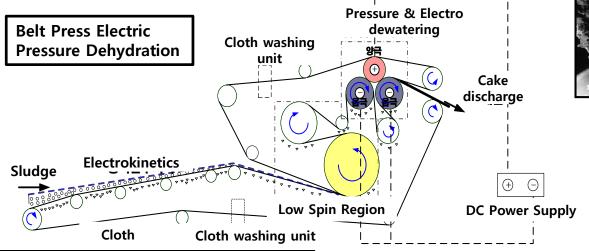
Thermal conductivity enhancement of Nanofluids : Jaekeun Lee, 2006



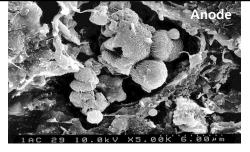

Environmental Thermal Flow Analysis

- 1. Thermal Flow and Particle behavior Analysis on Environment energy (Particle Size: 1nm~500μm)
- 2. Flow Analysis of Heat Exchanger/Dryer/Boiler/
- 3. Fouling and Erosion Phenomenon
- 4. Powder/Particle Measurement, Separation and Collection

Clean Room Air current / Particle behavior analysis

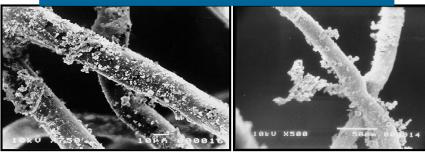


Double pipe HEX (3 phase Thermal Flow analysis)
Commercialization of Vacuum Dryer Device (Jangwo Co.)

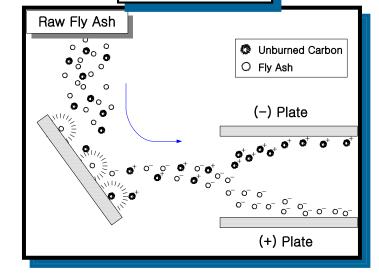



Particle Separation

- 1. Filter/Electrostatic Precipitator
- 2. Separation Particle-Liquid using Osmotic Pressure / Electrocoagulation / Electrophoresis
- 3. Dehydration utilizing Pressure Filteration and Elecrophoresis
- 4. Particle Separation using Triboelectostatic
- 5. Separation Particle-liquid
- 6. Cyclone Design



Particle shape after Electro-dewatering



Particle shape piled up Filter (Left: conventional, Right: EAA Filter)

Triboelectrostatic

